Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1004: 25

Answer

$$\frac{2}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\int_0^{\sqrt {1 - {x^2}} } {\int_0^{\sqrt {1 - {x^2}} } {dzdydx} } } \cr & {\text{Integrate with respecto to }}z \cr & = \int_0^1 {\int_0^{\sqrt {1 - {x^2}} } {\left[ z \right]_0^{\sqrt {1 - {x^2}} }} dy} dx \cr & = \int_0^1 {\int_0^{\sqrt {1 - {x^2}} } {\sqrt {1 - {x^2}} } dy} dx \cr & {\text{Integrate with respecto to }}y \cr & = \int_0^1 {\left[ {y\sqrt {1 - {x^2}} } \right]_0^{\sqrt {1 - {x^2}} }} dx \cr & = \int_0^1 {\left[ {\sqrt {1 - {x^2}} \sqrt {1 - {x^2}} } \right]} dx \cr & = \int_0^1 {\left( {1 - {x^2}} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & = \left[ {x - \frac{1}{3}{x^3}} \right]_0^1 \cr & = 1 - \frac{1}{3}{\left( 1 \right)^3} \cr & = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.