Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1004: 30

Answer

$$4$$

Work Step by Step

$$\eqalign{ & \int_0^\pi {\int_0^\pi {\int_0^{\sin x} {\sin y{\text{ }}} dzdxdy} } \cr & {\text{Integrate with respect to }}z \cr & = \int_0^\pi {\int_0^\pi {\left[ {z\sin y} \right]_0^{\sin x}dxdy} } \cr & = \int_0^\pi {\int_0^\pi {\left[ {\sin x\sin y - 0\sin y} \right]dxdy} } \cr & = \int_0^\pi {\int_0^\pi {\sin x\sin ydxdy} } \cr & {\text{Integrate with respect to }}x \cr & = - \int_0^\pi {\left[ {\sin y\cos x} \right]_0^\pi dy} \cr & = - \int_0^\pi {\left[ {\sin y\cos \pi - \sin y\cos 0} \right]dy} \cr & = - \int_0^\pi {\left( { - \sin y - \sin y} \right)dy} \cr & = 2\int_0^\pi {\sin ydy} \cr & {\text{Integrate }} \cr & = 2\left[ { - \cos y} \right]_0^\pi \cr & = - 2\left[ {\cos \pi - \cos 0} \right] \cr & = - 2\left( { - 1 - 1} \right) \cr & = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.