#### Answer

$\textbf{r}'(t) = \langle -sin(t), 2t, cos(t)\rangle$

#### Work Step by Step

$\textbf{r}(t) = \langle f(t), g(t), h(t)\rangle$
$\textbf{r}'(t) = \langle f'(t), g'(t), h'(t)\rangle$
$\textbf{r}(t) = \langle cos(t), t^2, sin(t)\rangle$
$\textbf{r}'(t) = \langle -sin(t), 2t, cos(t)\rangle$