Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.6 Calculus of Vector-Valued Functions - 11.6 Exercises: 13

Answer

$\textbf{r}'(t) = \langle e^{-t}-te^{-t}, ln(t) + 1, cos(t) - t\ sin(t)\rangle$

Work Step by Step

$\textbf{r}(t) = \langle f(t), g(t), h(t)\rangle$ $\textbf{r}'(t) = \langle f'(t), g'(t), h'(t)\rangle$ $\textbf{r}(t) = \langle te^{-t}, t\ ln(t), t\ cos(t)\rangle$ Using Product Rule: $\textbf{r}'(t) = \langle e^{-t}-te^{-t}, ln(t) + 1, cos(t) - t\ sin(t)\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.