Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 10 - Parametric and Polar Curves - 10.2 Polar Coordinates - 10.2 Exercises - Page 729: 19

Answer

$$\left( {2\sqrt 2 , - 2\sqrt 2 } \right)$$

Work Step by Step

$$\eqalign{ & \left( { - 4,\frac{{3\pi }}{4}} \right) = \left( { - r,\theta } \right) \cr & {\text{Where }}\left( { - r,\theta } \right) = \left( {r,\theta + \pi } \right) \cr & \left( { - 4,\frac{{3\pi }}{4}} \right) = \left( {4,\frac{{3\pi }}{4} + \pi } \right) \cr & \left( { - 4,\frac{{3\pi }}{4}} \right) = \left( {4,\frac{{7\pi }}{4}} \right) \cr & \Rightarrow r = 4{\text{ and }}\theta = \frac{{7\pi }}{4} \cr & {\text{Converting to cartesian coordinates }}\left( {x,y} \right).{\text{ Where}} \cr & x = r\cos \theta {\text{ and }}y = r\sin \theta \cr & {\text{We obtain}}{\text{,}} \cr & x = 4\cos \left( {\frac{{7\pi }}{4}} \right) = 4\left( {\frac{{\sqrt 2 }}{2}} \right) = 2\sqrt 2 \cr & y = 4\sin \left( {\frac{{7\pi }}{4}} \right) = 4\left( { - \frac{{\sqrt 2 }}{2}} \right) = - 2\sqrt 2 \cr & {\text{The cartesian coordinates are:}} \cr & \left( {x,y} \right) = \left( {2\sqrt 2 , - 2\sqrt 2 } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.