Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 45

Answer

\[4\ln 4-8\]

Work Step by Step

Let \[I=\int_{0}^{4}\frac{\ln x}{\sqrt x}dx\] Clearly 0 is point of infinite discontinuity of integrand $\large\frac{\ln x}{\sqrt x}$ \[I=\lim_{t\rightarrow 0^+}\int_{t}^{4}\frac{\ln x}{\sqrt x}dx\;\;\;\;\ldots (1)\] Let \[I_1=\int\frac{\ln x}{\sqrt x}dx\] Substitute $\;r=\ln x\;\;\;\ldots (2)$ \[\Rightarrow dr=\frac{1}{x}dx\] \[I_1=\int\frac{x}{\sqrt{x}}\,rdr=\int re^{\frac{r}{2}}dr\] Using integration by parts \[I_1=r\int e^{\frac{r}{2}}dr-\int \left((r)'\int e^{\frac{r}{2}}dr\right)dr\] \[I_1=2re^{\frac{r}{2}}-2\int e^{\frac{r}{2}}dr\] \[I_1=2re^{\frac{r}{2}}-4e^{\frac{r}{2}}+C\] Where $C$ is constant of integration From (2) \[I_1=2\ln x \: \sqrt{x}-4\sqrt{x}+C\;\;\;\ldots (3)\] Using (3) in (1) \[I=\lim_{t\rightarrow 0^+}\left[2\sqrt{x}\ln x-4\sqrt{x}\right]_{t}^{4}\] \[I=\lim_{t\rightarrow 0^+}\left[4\ln 4-8-2\sqrt{t}\ln t+4\sqrt{t}\right]\] \[I=4\ln 4-8-2\lim_{t\rightarrow 0^+}\left[\frac{\ln t}{t^{-\frac{1}{2}}}\right] \;\;\;\;\; \left(\frac{\infty}{\infty} form\right)\] Using L' Hopital's rule \[I=4\ln 4-8-2\lim_{t\rightarrow 0^+}\left(\frac{\frac{1}{t}}{\frac{-1}{2t^{\frac{3}{2}}}}\right)\] \[I=4\ln 4-8-2\lim_{t\rightarrow 0^+}\left[-2\sqrt t\right]\] \[I=4\ln 4-8\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=4\ln 4-8$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.