Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 23

Answer

\[\ln\left|\frac{\sqrt{x^2+1}-1}{x}\right|+C\]

Work Step by Step

Let \[I=\int\frac{dx}{x\sqrt{x^2+1}}\;\;\;\ldots (1)\] Substitute $\;x=\tan \theta\;\;\;\;\ldots (2)$ \[\Rightarrow dx=\sec^2 \theta\:d \theta\] (1) becomes \[I=\int\frac{\sec^2 \theta}{\tan \theta\sqrt{\tan^2 \theta+1}}d \theta\] \[I=\int\frac{\sec^2 \theta}{\tan \theta\sec \theta}d \theta\] \[I=\int\frac{\sec \theta}{\tan \theta}d \theta\] \[I=\int\frac{\left(\frac{1}{\cos \theta }\right)}{\left(\frac{\sin \theta }{\cos \theta}\right)}d\theta=\int\csc \theta \] \[I=\ln|\csc\theta-\cot\theta|+C \;\;\;\ldots (3)\] $C$ is constant of integration From (2) \[\tan\theta=x\] \[\Rightarrow \cot \theta=\frac{1}{x}\;\;\;\ldots (4)\] \[\csc\theta=\sqrt{1+\cot^2\theta}=\sqrt{1+\frac{1}{x^2}}\] \[\csc\theta=\frac{\sqrt{x^2+1}}{x}\;\;\;\ldots (5)\] Using (4), (5) in (3) \[I=\ln\left|\frac{\sqrt{x^2+1}}{x}-\frac{1}{x}\right|+C\] \[I=\ln\left|\frac{\sqrt{x^2+1}-1}{x}\right|+C\] Hence \[I=\ln\left|\frac{\sqrt{x^2+1}-1}{x}\right|+C.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.