Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 32

Answer

\[\frac{π}{4}-\frac{1}{2}\]

Work Step by Step

Let \[I=\int_{0}^{\frac{π}{4}}\frac{x\sin x}{\cos^3 x}dx\] \[I=\int_{0}^{\frac{π}{4}} x\tan x(\sec^2 x)dx\;\;\;\ldots (1)\] Consider indefinite integral \[I_1=\int x\left(\tan x \:\sec^2 x\right)dx\] Using integration by parts \[I_1=x\int\left(\tan x \:\sec^2 x\right)dx-\int\left((x)'\int\left(\tan x \:\sec^2 x\right)dx\right)dx\] \[I_1=\frac{x\tan^2 x}{2}-\int\frac{\tan^2 x}{2}dx\] \[I_1=\frac{x\tan^2 x}{2}-\frac{1}{2}\int\left(\sec^2 x-1\right)dx\] \[I_1=\frac{x\tan^2 x}{2}-\frac{\tan x}{2}+\frac{ x}{2}+C\;\;\;\;\ldots (2)\] Where $C$ is constant of integration Using (2) in (1) \[I=\left[\frac{x\tan^2 x}{2}-\frac{\tan x}{2}+\frac{ x}{2}\right]_{0}^{\frac{π}{4}}\] \[I=\frac{π}{8}-\frac{1}{2}+\frac{π}{8}=\frac{π}{4}-\frac{1}{2}\] Hence \[I=\frac{π}{4}-\frac{1}{2}\;\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.