Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 22

Answer

Convergent $\;,\;$ 1

Work Step by Step

Let \[I=\int_{1}^{\infty}\frac{\ln x}{x^2}dx\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}\frac{\ln x}{x^2}dx\;\;\;\ldots (1)\] Let \[I_1=\int\frac{\ln x}{x^2}dx\] Substitute $\ln x=r \;\;\;\ldots (2)$ \[\Rightarrow \frac{1}{x}dx=dr\] \[I_1=\int\frac{r}{e^r}dr\] \[I_1=\int re^{-r}dr\] Using integration by parts \[I_1=r\int e^{-r}dr-\int \left((r)'\int e^{-r}dr\right)dr\] \[I_1=-re^{-r}+\int e^{-r}dr\] \[I_1=-re^{-r}-e^{-r}\] From (2) \[I_1=\frac{-(\ln x)}{x}-\frac{1}{x}\;\;\;\ldots (3)\] Using (3) in (1) \[I=\lim_{t\rightarrow \infty}\left[\frac{-(\ln x)}{x}-\frac{1}{x}\right]_{1}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{-(\ln t)}{t}-\frac{1}{t}-(0-1)\right]\] \[I=\lim_{t\rightarrow \infty}\left[\frac{-(\ln t)}{t}+1\right]\] Using L' Hopital's rule \[I=\lim_{t\rightarrow \infty}\left[\frac{\frac{-1}{t}}{1}+1\right]\] \[I=1\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $ I=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.