Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 17

Answer

Convergent $\;,\;$ $\ln 2$

Work Step by Step

Let \[I=\int_{1}^{\infty}\frac{1}{x^2+x}dx\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}\frac{1}{x^2+x}dx\;\;\;\ldots(1)\] Let \[I_1=\int\frac{1}{x^2+x}dx\] \[I_1=\int\frac{1}{x(x+1)}dx\] \[I_1=\int\left[\frac{1}{x}-\frac{1}{x+1}\right]dx\] \[I_1=\ln|x|-\ln |x+1|\] \[I_1=\ln\left|\frac{x}{x+1}\right|\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow \infty}\left[\ln\left|\frac{x}{x+1}\right|\right]_{1}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\ln\left|\frac{t}{t+1}\right|-\ln\left|\frac{1}{2}\right|\right]\] \[I=\lim_{t\rightarrow \infty}\left[\ln\left|\frac{1}{1+\frac{1}{t}}\right|-\ln\left|\frac{1}{2}\right|\right]\] \[I=-\ln\frac{1}{2}=\ln 2\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\ln 2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.