Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 11

Answer

Divergent

Work Step by Step

Let \[I=\int_{0}^{\infty}\frac{x^2}{\sqrt{1+x^3}}dx\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow \infty}\int_{0}^{t}\frac{x^2}{\sqrt{1+x^3}}dx\;\;\;\ldots (2)\] \[I=\lim_{t\rightarrow \infty}\frac{1}{3}\int_{0}^{t}\frac{3x^2}{\sqrt{1+x^3}}dx\;\;\;\ldots (3)\] Let\[I_1=\int\frac{3x^2}{\sqrt{1+x^3}}dx\] Substitute $r=1+x^3$ _____(4) $\;\;\;\;\;\;\;\;\;\Rightarrow dr=3x^2dx$ \[I_1=\int\frac{dr}{\sqrt{r}}=2\sqrt{r}\] Using (4) \[I_1=2\sqrt{1+x^3}\;\;\;\ldots (5)\] Using (5) in (3) \[I=\lim_{t\rightarrow \infty}\frac{1}{3}\left[2\sqrt{1+x^3}\right]_{0}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{2}{3}\sqrt{1+t^3}-\frac{2}{3}\right]\] Does not exist Since limit on R.H.S. of (2) does not exist so $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.