Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.2 Trigonometric Integrals - 7.2 Exercises - Page 524: 16


$\frac{\sin^3 x}{3}+C$

Work Step by Step

$\int \tan^2 x\cos^3 x\ dx$ $=\int\frac{\sin^2 x}{\cos^2 x}*\cos^3 x\ dx$ $=\int\sin^2 x\cos x\ dx$ Let $u=\sin x$. Then $du=\cos x\ dx$. $=\int u^2 du$ $=\frac{u^3}{3}+C$ $=\boxed{\frac{\sin^3 x}{3}+C}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.