Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.7 Hyperbolic Functions - 6.7 Exercises - Page 489: 15

Answer

\[\sinh 2x=2\sinh x\cosh x\]

Work Step by Step

To show that:-\[\sinh 2x=2\sin hx\;\cos hx\] We know that \[\sinh x=\frac{e^x-e^{-x}}{2}\;\;\;...(1)\] and \[\cosh x=\frac{e^x+e^{-x}}{2}\;\;\;...(2)\] Using (1) \[\sinh 2x=\frac{e^{2x}-e^{-2x}}{2}\;\;\;...(3)\] Consider \[I=2\sin hx\;\cos hx\] Using (1) and (2) \[I=2\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^x+e^{-x}}{2}\right)\] \[I=\frac{(e^x-e^{-x})(e^{x}+e^{-x})}{2}\] \[\Rightarrow I=\frac{e^{2x}-e^{-2x}}{2}\;\;\;...(4)\] Using (3) and (4) \[\sinh 2x=I\] \[\Rightarrow \sinh 2x=2\sinh x\cosh x\] Hence, \[\sinh 2x=2\sinh x\cosh x\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.