Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.1 Inverse Functions - 6.1 Exercises - Page 406: 14


This function is one-to-one.

Work Step by Step

The cosine function is continuous and decreasing when $x\in[0,\pi]$. This means that $h(x)=1+\cos x$ is also continuous and decreasing on $[0,\pi]$. So, for every $x_1,x_2\in[0,\pi]$ (which is the domain) $x_1h(x_2)$ and if $x_2$ is greater then $h(x_2)>h(x_1)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.