Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - Review - Exercises - Page 350: 38

Answer

\[g'(x)=\frac{\cos^3 x}{1+\sin^4 x}\]

Work Step by Step

We will use the rule \[\frac{d}{dx}\int_{f(x)}^{g(x)}F(t)dt=F(g(x))\cdot g'(x)-F(f(x))\cdot f'(x)\;\;\; ...(1)\] We have given that \[g(x)=\int_{1}^{\sin x}\frac{1-t^2}{1+t^4}\;dt\;\;\;...(2)\] Differentiate (2) with respect to $x$ using (1) \[g'(x)=\left(\frac{1-\sin^2 x}{1+\sin^4 x}\right)\cdot (\sin x)'-\left(\frac{1-1^2}{1+1^4}\right)\cdot (1)'\] \[\Rightarrow g'(x)=\left(\frac{1-\sin^2 x}{1+\sin^4 x}\right)\cdot (\cos x)-\left(\frac{0}{2}\right)\cdot (0)\] \[\Rightarrow g'(x)=\left(\frac{\cos^2 x}{1+\sin^4 x}\right)\cdot (\cos x)\] \[\Rightarrow g'(x)=\frac{\cos^3 x}{1+\sin^4 x}\] Hence, \[g'(x)=\frac{\cos^3 x}{1+\sin^4 x}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.