Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.5 The Substitution Rule - 4.5 Exercises - Page 346: 9


$-\frac{(1-2x)^{10}}{20} +C$

Work Step by Step

Evaluate the Integral using substitution: $\int (1-2x)^9dx$ Substitution Rule: $\int f(g(x))gā€™(x)dx = \int f(u)du$ $u= 1-2x$ $du = -2$ Determine if $du$ is modified by a constant. In this expression $du$ is multipled by $-\frac{1}{2} $ to equal $ 1$ Solve the integral in terms of $u$: $\int (u)^9(-\frac{1}{2}du)$ $-\frac{1}{2}\int (u)^9du $ $-\frac{1}{2} \frac{u^{10}}{10} +C$ $-\frac{(u)^{10}}{20} +C$ Substitute for $u$: $-\frac{(1-2x)^{10}}{20} +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.