Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.5 The Substitution Rule - 4.5 Exercises - Page 346: 11


$-\frac{3}{2}cos(\frac{2\theta}{3}) +C$

Work Step by Step

Evaluate the Integral using substitution: $\int sin(\frac{2\theta}{3}) d\theta$ Substitution Rule: $\int f(g(x))gā€™(x)dx = \int f(u)du$ $u= \frac{2\theta}{3}$ $du =\frac23$ In this expression du is multipled by $\frac32$ to equal $1$ Solve the integral in terms of $u$: $\int sin(u)(\frac32)du$ $\frac{3}{2}\int sin(u)du $ $-\frac{3}{2}cos(u) +C$ Substitute for $u$: $-\frac{3}{2}cos(\frac{2\theta}{3}) +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.