Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.5 The Substitution Rule - 4.5 Exercises - Page 346: 26


$-\frac{1}{tanx} +C$

Work Step by Step

Evaluate the Integral using substitution: $\int \frac{sec^2x}{tan^2x}dx$ Substitution Rule: $\int f(g(x))gā€™(x)dx = \int f(u)du$ $u= tan(x)$ $du =sec^2(x)$ Solve the integral in terms of $u$: $\int \frac{1}{u^2}du$ $-\frac{1}{u} +C$ Substitute for $u$: $-\frac{1}{tanx} +C$ Which can also be written as: $-cotx +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.