Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.4 Limits at Infinity; Horizontal Asymptotes - 3.4 Exercises - Page 242: 20



Work Step by Step

Given $$ \lim _{x\to \infty }\frac{ x+3x^2 }{4x-1}$$ Then \begin{aligned} \lim _{x\to \infty }\frac{ x+3x^2 }{4x-1}&= \lim _{x\to \infty }\frac{ \frac{x}{x }+3\frac{x^2}{x } }{4\frac{x}{x}-\frac{1}{x}} \\ &=\lim _{x\to \infty }\frac{ 1+3x }{4 -\frac{1}{x}} \\ &=\infty \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.