Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.4 Limits at Infinity; Horizontal Asymptotes - 3.4 Exercises - Page 242: 10



Work Step by Step

Given $$ \lim _{x\rightarrow \infty}\frac{1-x^2}{x^3-x+1}$$ Then \begin{aligned} \lim _{x\rightarrow \infty}\frac{1-x^2}{x^3-x+1} &= \lim _{x\rightarrow \infty}\frac{\frac{1}{x^3}-\frac{x^2}{x^3}}{\frac{x^3}{x^3}-\frac{x }{x^3}+\frac{1}{x^3}} \\ &= \lim _{x\rightarrow \infty}\frac{0-0}{1-0+0}\\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.