Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.4 Derivatives of Trigonometric Functions - 2.4 Exercises - Page 151: 50



Work Step by Step

Given $$\lim _{x\to 1}\frac{\sin \left(x-1\right)}{x^2+x-2}$$ Since \begin{align*} \lim _{x\to 1}\frac{\sin \left(x-1\right)}{x^2+x-2}&=\lim _{x\to 1}\frac{\sin \left(x-1\right)}{(x-1)(x+2)}\\ &=\lim _{x\to 1}\frac{1}{x+2}\lim _{x\to 1}\frac{\sin \left(x-1\right)}{(x-1)}\\ &=\lim _{x\to 1}\frac{1}{x+2}\lim _{x-1\to 0}\frac{\sin \left(x-1\right)}{(x-1)}\\ &=\frac{1}{3}(1)==\frac{1}{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.