Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.4 Derivatives of Trigonometric Functions - 2.4 Exercises - Page 151: 44



Work Step by Step

Given $$\lim_{x\to 0}\frac{\sin 3x\sin 5x}{x^2} $$ Then \begin{align*} \lim_{x\to 0}\frac{\sin 3x\sin 5x}{x^2}&=\lim_{x\to 0}\frac{\sin 3x\sin 5x}{x\cdot x}\\ &=\lim_{x\to 0}\frac{\sin 3x}{x}\frac{\sin 5x}{ x}\\ &=15\lim_{3x\to 0}\frac{\sin 3x}{3x}\lim_{5x\to 0}\frac{\sin 5x}{5 x}\\ &=15 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.