Answer
a. This is the graph of the given parameter:
b. $x=y^{2}-4y+1$, -$1\leq y\leq5$
Work Step by Step
Using the given equations, x=$t^{2}$-3 and y=t+2 create a table of values in terms of x and y, using values of t within the given interval (−3$\leq$t$\leq$3). Then, plot the calculated points from the lowest t value to the highest t value. This will give the direction of the curve.
b.
$y=t+2$
$t=y-2$ ......(1)
$x=t^{2}-3$.....(2)
by substituting (1) into (2):
$x=(y-2)^{2}-3=y^{2}-4y+4-3$
so,
$x=y^{2}-4y+1, -1\leq y\leq 5$