Answer
a. See the graph
b. $y=\frac{1}{4}x+\frac{5}{4}$
Work Step by Step
a. Using the given equations, $x=2t-1$ and $y=\frac{1}{2}t+1$ create a table of values in terms of x and y, using values of t Then, plot the calculated points from the lowest t value to the highest t value. This will give the direction of the curve.
b.
$x=2t-1$
$2t=x+1$
$t=\frac{1}{2}x+\frac{1}{2}$.......(1)
$y=\frac{1}{2}t+1$ .......(2)
by substituting (1) into (2) we get:
$y=\frac{1}{2} (\frac{1}{2}x+\frac{1}{2})+1$
$y=\frac{1}{4}x+\frac{1}{4}+1$
$y=\frac{1}{4}x+\frac{1}{4}+\frac{4}{4}$
$y=\frac{1}{4}x+\frac{5}{4}$