Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.1 Area Between Two Curves - Exercises: 3


$A=\frac{32}{3} $

Work Step by Step

$f(x) = x^2 +2$ $and$ $g(x) = 2x+5$ $When$ $f(x) =g(x),$ $x =-1,3$ $A=\int_{-1}^3 (g(x)-f(x))dx $ $A=\int_{-1}^3 (-x^2 +2x +3)dx $ $A= [-\frac{1}{3} x^3 +x^2 +3x]_{-1}^3 $ $A=[-\frac{27}{3}+9+9]-[\frac{1}{3} +1-3] $ $A=[9]-[-\frac{5}{3}] $ $A=\frac{32}{3} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.