Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 40

Answer

$$\frac{2}{15} (x^{3}+1)^{5 / 2}-\frac{2}{9} (x^{3}+1)^{3 / 2}+c$$

Work Step by Step

Given $$ \int x^{5} \sqrt{x^{3}+1} d x $$ Let $$u=x^{3}+1 \ \ \ \Rightarrow \ \ du=3x^2dx $$ then \begin{align*} \int x^{5} \sqrt{x^{3}+1} d x &=\frac{1}{3} \int(u-1) \sqrt{u} d u \\ &=\frac{1}{3} \int(u-1) u^{1 / 2} d u \\ &=\frac{1}{3} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\ &=\frac{1}{3}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+c\right) \\ &=\frac{2}{15} u^{5 / 2}-\frac{2}{9} u^{3 / 2}+c\\ &= \frac{2}{15} (x^{3}+1)^{5 / 2}-\frac{2}{9} (x^{3}+1)^{3 / 2}+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.