Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 26


$$\sin (\sin x) +c$$

Work Step by Step

Given $$\int \cos x \cos (\sin x) d x$$ Let $$ u= \sin x\ \ \ \Rightarrow \ \ \ du=\cos xdx$$ Then \begin{align*} \int \cos x \cos (\sin x) d x&= \int \cos \left(u\right)du\\ &= \sin u +c\\ &= \sin (\sin x) +c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.