Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.1 Approximating and Computing Area - Exercises - Page 235: 18



Work Step by Step

Given $$f(x)=x^{2}+x, \quad[-1,1]$$ Since $n=5$, then $\Delta x=\dfrac{1+1}{5}=0.4$ and $$x_0=-1,\ x_1=-0.6,\ x_2= -0.2,\ x_3= 0.2,\ x_4=0.6,\ x_5= 1 $$ Then \begin{align*} R_{n}&=\left[f(x_1)+f(x_2)+.......+f(x_{n })\right]\Delta x\\ R_5&=\left[f(x_1 )+f(x_2)+.......+f(x_{5})\right]\Delta x\\ &=\left[f(-0.6)+f(-0.2)+f(0.2)+f(0.6)+f(1)\right](0.4)\\ &=[-0.24-0.16+0.24+0.96+2 ]0.4\\ &=1.12 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.