Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.6 Trigonometric Limits - Exercises - Page 77: 38



Work Step by Step

\begin{align*} \lim _{z\rightarrow 0} \frac{\sin (z/3)}{\sin z} &=\lim _{z\rightarrow 0} \frac{\sin (z/3)}{z} \frac{z}{\sin z} \\ &= \lim _{z\rightarrow 0} \frac{1}{3} \frac{\sin (z/3)}{z/3} \frac{z}{\sin z} \\ &=\frac{1}{3}\lim _{z/3\rightarrow 0} \frac{\sin (z/3)}{z/3}\lim _{z\rightarrow 0} \frac{z}{\sin z} \\ &=\frac{1}{3}. \end{align*} Where we used Theorem 2 -- that is, $\lim _{x\rightarrow 0}\frac{ \sin x}{ x}=1. $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.