Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 905: 29

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}x{\rm{d}}y = 82$

Work Step by Step

We have the domain ${\cal R} = \left[ {1,2} \right] \times \left[ {0,6} \right]$ in the $uv$-plane. Using the map $G\left( {u,v} \right) = \left( {{u^2},u + v} \right)$, we evaluate the Jacobian of $G$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {2u}&0\\ 1&1 \end{array}} \right| = 2u$ Write $f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right) = y\left( {u,v} \right) = u + v$. Using the General Change of Variables Formula, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right)\left| {Jac\left( G \right)} \right|{\rm{d}}u{\rm{d}}v$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}x{\rm{d}}y = 2\mathop \smallint \limits_{v = 0}^6 \mathop \smallint \limits_{u = 1}^2 u\left( {u + v} \right){\rm{d}}u{\rm{d}}v$ $ = 2\mathop \smallint \limits_{v = 0}^6 \mathop \smallint \limits_{u = 1}^2 \left( {{u^2} + uv} \right){\rm{d}}u{\rm{d}}v$ $ = 2\mathop \smallint \limits_{v = 0}^6 \left( {\left( {\frac{1}{3}{u^3} + \frac{1}{2}{u^2}v} \right)|_1^2} \right){\rm{d}}v$ $ = 2\mathop \smallint \limits_{v = 0}^6 \left( {\frac{8}{3} + 2v - \frac{1}{3} - \frac{v}{2}} \right){\rm{d}}v$ $ = 2\mathop \smallint \limits_{v = 0}^6 \left( {\frac{7}{3} + \frac{3}{2}v} \right){\rm{d}}v$ $ = 2\left( {\left( {\frac{7}{3}v + \frac{3}{4}{v^2}} \right)|_0^6} \right)$ $ = 2\left( {\frac{{42}}{3} + 27} \right) = 82$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y{\rm{d}}x{\rm{d}}y = 82$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.