Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 905: 19

Answer

The linear mapping is $G = \left( {4u + 2v,u + 3v} \right)$.

Work Step by Step

A linear mapping is given by the form: $G\left( {u,v} \right) = \left( {Au + Cv,Bu + Dv} \right)$ The domain ${\cal R}:\left[ {0,1} \right] \times \left[ {0,1} \right]$ in the $uv$-plane is spanned by the vectors $\overrightarrow {OP} = \left( {0,1} \right)$ and $\overrightarrow {OQ} = \left( {1,0} \right)$. Using $G\left( {u,v} \right)$ we obtain the images of $\overrightarrow {OP} $ and $\overrightarrow {OQ} $: $G\left( {\overrightarrow {OP} } \right) = G\left( {0,1} \right) = \left( {C,D} \right)$ $G\left( {\overrightarrow {OQ} } \right) = G\left( {1,0} \right) = \left( {A,B} \right)$ Since $G$ is a linear map, $G\left( {\overrightarrow {OP} } \right)$ and $G\left( {\overrightarrow {OQ} } \right)$ span the parallelogram in the $xy$-plane. Thus, $G\left( {\overrightarrow {OP} } \right) = \left( {C,D} \right) = \left( {2,3} \right)$ $G\left( {\overrightarrow {OQ} } \right) = \left( {A,B} \right) = \left( {4,1} \right)$ Therefore, $A=4$, $B=1$, $C=2$, and $D=3$. Thus, we obtain the linear mapping: $G = \left( {4u + 2v,u + 3v} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.