Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.6 Change of Variables - Exercises - Page 905: 23

Answer

(a) ${\rm{Area}}\left( {G\left( {\cal R} \right)} \right) = 105$ (b) ${\rm{Area}}\left( {G\left( {\cal R} \right)} \right)= 126$

Work Step by Step

We have the mapping $G\left( {u,v} \right) = \left( {3u + v,u - 2v} \right)$. So, $x\left( {u,v} \right) = 3u + v$ and $y\left( {u,v} \right) = u - 2v$. Compute the Jacobian of $G$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 3&1\\ 1&{ - 2} \end{array}} \right| = - 7$ Since $G$ is a linear map, we use Eq. (6) of Theorem 1 to evaluate the area of $G\left( {\cal R} \right)$: ${\rm{Area}}\left( {G\left( {\cal R} \right)} \right) = \left| {{\rm{Jac}}\left( G \right)} \right|{\rm{Area}}\left( {\cal R} \right)$ (a) We have ${\cal R} = \left[ {0,3} \right] \times \left[ {0,5} \right]$. So, ${\rm{Area}}\left( {\cal R} \right) = \left( 3 \right)\left( 5 \right) = 15$. ${\rm{Area}}\left( {G\left( {\cal R} \right)} \right) = \left( 7 \right)\left( {15} \right) = 105$ (b) We have ${\cal R} = \left[ {2,5} \right] \times \left[ {1,7} \right]$. So, ${\rm{Area}}\left( {\cal R} \right) = \left( 3 \right)\left( 6 \right) = 18$. ${\rm{Area}}\left( {G\left( {\cal R} \right)} \right) = \left( 7 \right)\left( {18} \right) = 126$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.