Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 846: 13

Answer

Using a computer algebra system, we obtain: 1. for $N=25$: ${S_{25,25}} \simeq 1.07308$ 2. for $N=50$: ${S_{50,50}} \simeq 1.07827$ 3. for $N=100$: ${S_{100,100}} \simeq 1.08092$

Work Step by Step

The Riemann sum ${S_{N,N}}$ to estimate $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 {{\rm{e}}^{{x^3} - {y^3}}}{\rm{d}}y{\rm{d}}x$ is given by ${S_{N,N}} = \mathop \sum \limits_{i = 1}^N \mathop \sum \limits_{j = 1}^N f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j}$, where $f\left( {x,y} \right) = {{\rm{e}}^{{x^3} - {y^3}}}$. The domain is ${\cal R} = \left[ {0,1} \right] \times \left[ {0,1} \right]$. We evaluate ${S_{N,N}}$ using lower left-hand vertices as sample points. Case 1. For $N=25$ Using the regular partition, dimensions of the subrectangles are $\Delta x = \frac{{1 - 0}}{{25}} = \frac{1}{{25}}$, ${\ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{25}} = \frac{1}{{25}}$ The Riemann sum becomes ${S_{25,25}} = \mathop \sum \limits_{i = 1}^{25} \mathop \sum \limits_{j = 1}^{25} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j}$ ${S_{25,25}} = \frac{1}{{625}}\left( {f\left( {0,0} \right) + f\left( {\frac{1}{{25}},0} \right) + \cdot\cdot\cdot + f\left( {\frac{{23}}{{25}},\frac{{24}}{{25}}} \right) + f\left( {\frac{{24}}{{25}},\frac{{24}}{{25}}} \right)} \right)$ Using a computer algebra system, we obtain ${S_{25,25}} \simeq 1.07308$. Case 2. For $N=50$ Using the regular partition, dimensions of the subrectangles are $\Delta x = \frac{{1 - 0}}{{50}} = \frac{1}{{50}}$, ${\ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{50}} = \frac{1}{{50}}$ The Riemann sum becomes ${S_{50,50}} = \mathop \sum \limits_{i = 1}^{50} \mathop \sum \limits_{j = 1}^{50} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j}$ ${S_{50,50}} = \frac{1}{{2500}}\left( {f\left( {0,0} \right) + f\left( {\frac{1}{{50}},0} \right) + \cdot\cdot\cdot + f\left( {\frac{{24}}{{25}},\frac{{49}}{{50}}} \right) + f\left( {\frac{{49}}{{50}},\frac{{49}}{{50}}} \right)} \right)$ Using a computer algebra system, we obtain ${S_{50,50}} \simeq 1.07827$. Case 3. For $N=100$ Using the regular partition, dimensions of the subrectangles are $\Delta x = \frac{{1 - 0}}{{100}} = \frac{1}{{100}}$, ${\ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{100}} = \frac{1}{{100}}$ The Riemann sum becomes ${S_{100,100}} = \mathop \sum \limits_{i = 1}^{100} \mathop \sum \limits_{j = 1}^{100} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j}$ ${S_{100,100}} = \frac{1}{{10000}}\left( {f\left( {0,0} \right) + f\left( {\frac{1}{{100}},0} \right) + \cdot\cdot\cdot + f\left( {\frac{{49}}{{50}},\frac{{99}}{{100}}} \right) + f\left( {\frac{{99}}{{100}},\frac{{99}}{{100}}} \right)} \right)$ Using a computer algebra system, we obtain ${S_{100,100}} \simeq 1.08092$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.