Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 846: 11

Answer

The volume of the mound $V \simeq 0.19376$.

Work Step by Step

The Riemann sum ${S_{4,3}}$ implies that $N=4$ and $M=3$. From the table we see that $\Delta x = \Delta y = \frac{1}{4}$. And also, $x$ and $y$ start from the origin. Denote the $x$-interval by $\left[ {0,b} \right]$ and $y$-interval by $\left[ {0,d} \right]$. So, $\Delta x = \frac{1}{4} = \frac{{b - 0}}{N}$ $b=1$ $\Delta y = \frac{1}{4} = \frac{{d - 0}}{M}$ $d = \frac{3}{4}$ So, the domain of the Riemann sum is ${\cal R} = \left[ {0,1} \right] \times \left[ {0,\frac{3}{4}} \right]$. The Riemann sum ${S_{4,3}}$ to estimate the volume of the mound is given by ${S_{4,3}} = \mathop \sum \limits_{i = 1}^4 \mathop \sum \limits_{j = 1}^3 f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j} = \frac{1}{{16}}\mathop \sum \limits_{i = 1}^4 \mathop \sum \limits_{j = 1}^3 f\left( {{P_{ij}}} \right)$, where $y = f\left( x \right)$. Step 1. Evaluate ${S_{4,3}}$ using lower-left vertices as sample points $S_{4,3}^{lower}$ $= \frac{1}{{16}}(f\left( {0,0} \right) + f\left( {0.25,0} \right) + f\left( {0.5,0} \right) + f\left( {0.75,0} \right)$ $ + f\left( {0,0.25} \right) + f\left( {0.25,0.25} \right) + f\left( {0.5,0.25} \right) + f\left( {0.75,0.25} \right)$ $ + f\left( {0,0.5} \right) + f\left( {0.25,0.5} \right) + f\left( {0.5,0.5} \right) + f\left( {0.75,0.5} \right))$ $ = \frac{1}{{16}}(0.1 + 0.15 + 0.2 + 0.15$ $\ \ \ $ $ + 0.15 + 0.2 + 0.4 + 0.3$ $\ \ \ $ $ + 0.2 + 0.3 + 0.5 + 0.4)$ $S_{4,3}^{lower} \simeq 0.19063$ Step 2. Evaluate ${S_{4,3}}$ using upper-right vertices as sample points $S_{4,3}^{upper}$ $= \frac{1}{{16}}(f\left( {0.25,0.25} \right) + f\left( {0.5,0.25} \right) + f\left( {0.75,0.25} \right) + f\left( {1,0.25} \right)$ $ + f\left( {0.25,0.5} \right) + f\left( {0.5,0.5} \right) + f\left( {0.75,0.5} \right) + f\left( {1,0.5} \right)$ $ + f\left( {0.25,0.75} \right) + f\left( {0.5,0.75} \right) + f\left( {0.75,0.75} \right) + f\left( {1,0.75} \right))$ $ = \frac{1}{{16}}(0.2 + 0.4 + 0.3 + 0.2$ $\ \ \ $ $ + 0.3 + 0.5 + 0.4 + 0.2$ $\ \ \ $ $ + 0.2 + 0.2 + 0.15 + 0.1)$ $S_{4,3}^{upper} \simeq 0.19688$ From these results, we compute the average of the two Riemann sums ${S_{4,3}}$ with lower-left and upper-right vertices: $\overline {{S_{4,3}}} = \frac{{S_{4,3}^{lower} + S_{4,3}^{upper}}}{2} \simeq \frac{{0.19063 + 0.19688}}{2} \simeq 0.19376$ So, the volume of the mound $V \simeq 0.19376$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.