Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 26

Answer

$f\left( {0.98,2.01} \right) = \frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}} \simeq 0.105185$ Using a calculator: $\frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}} \simeq 0.1053$.

Work Step by Step

Let $f\left( {x,y} \right) = \frac{{{x^2}}}{{{y^3} + 1}}$. So, the partial derivatives are ${f_x} = \frac{{2x}}{{{y^3} + 1}}$, ${\ \ \ }$ ${f_y} = - \frac{{3{x^2}{y^2}}}{{{{\left( {{y^3} + 1} \right)}^2}}}$ We can consider $\frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}}$ as a value of $f\left( {x,y} \right) = \frac{{{x^2}}}{{{y^3} + 1}}$. Thus, $f\left( {0.98,2.01} \right) = \frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}}$ Using the linear approximation, Eq. (3) we have $f\left( {a + h,b + k} \right) \approx f\left( {a,b} \right) + {f_x}\left( {a,b} \right)h + {f_y}\left( {a,b} \right)k$ For $\left( {a,b} \right) = \left( {1,2} \right)$ and $\left( {h,k} \right) = \left( { - 0.02,0.01} \right)$, we get $f\left( {0.98,2.01} \right) \approx f\left( {1,2} \right) + {f_x}\left( {1,2} \right)\cdot\left( { - 0.02} \right) + {f_y}\left( {1,2} \right)\cdot0.01$ $f\left( {0.98,2.01} \right) \simeq \frac{1}{9} + \frac{2}{9}\cdot\left( { - 0.02} \right) - \frac{4}{{27}}\cdot0.01$ $f\left( {0.98,2.01} \right) = \frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}} \simeq 0.105185$ Using a calculator, we get $\frac{{{{0.98}^2}}}{{{{2.01}^3} + 1}} \simeq 0.1053$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.