Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 34

Answer

At $t=2$: ${\bf{a}}\left( 2 \right) = \left( {2, - 2,0} \right) = \frac{{12}}{{\sqrt {21} }}{\bf{T}}\left( 2 \right) + \sqrt {\frac{8}{7}} {\bf{N}}\left( 2 \right)$, where ${\bf{T}}\left( 2 \right) = \frac{1}{{\sqrt {21} }}\left( {4, - 2,1} \right)$ and ${\bf{N}}\left( 2 \right) = \left( { - \frac{1}{{\sqrt {14} }}, - \frac{3}{{\sqrt {14} }}, - \frac{2}{{\sqrt {14} }}} \right)$.

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{t^2},2t - {t^2},t} \right)$. So, the tangential and the acceleration vectors are ${\bf{r}}'\left( t \right) = {\bf{v}}\left( t \right) = \left( {2t,2 - 2t,1} \right)$ and ${\bf{r}}{\rm{''}}\left( t \right) = {\bf{a}}\left( t \right) = \left( {2, - 2,0} \right)$, respectively. At $t=2$, we get ${\bf{v}}\left( 2 \right) = \left( {4, - 2,1} \right)$ ${\bf{a}}\left( 2 \right) = \left( {2, - 2,0} \right)$ The unit tangent vector at $t=2$ is ${\bf{T}}\left( 2 \right) = \frac{{{\bf{r}}'\left( 2 \right)}}{{||{\bf{r}}'\left( 2 \right)||}} = \frac{{\left( {4, - 2,1} \right)}}{{\sqrt {\left( {4, - 2,1} \right)\cdot\left( {4, - 2,1} \right)} }}$ ${\bf{T}}\left( 2 \right) = \frac{1}{{\sqrt {21} }}\left( {4, - 2,1} \right)$ By Eq. (2) of Theorem 1 (Section 14.5), the tangential component of acceleration is ${a_{\bf{T}}} = {\bf{a}}\left( 2 \right)\cdot{\bf{T}}\left( 2 \right) = \frac{1}{{\sqrt {21} }}\left( {2, - 2,0} \right)\cdot\left( {4, - 2,1} \right)$ ${a_{\bf{T}}} = \frac{{12}}{{\sqrt {21} }}$ By Eq. (3) of Theorem 1 (Section 14.5), ${a_{\bf{N}}}{\bf{N}} = {\bf{a}} - {a_{\bf{T}}}{\bf{T}}$ $ = \left( {2, - 2,0} \right) - \frac{{12}}{{\sqrt {21} }}\frac{1}{{\sqrt {21} }}\left( {4, - 2,1} \right)$ $ = \left( {2, - 2,0} \right) - \frac{{12}}{{21}}\left( {4, - 2,1} \right)$ $ = \left( { - \frac{2}{7}, - \frac{6}{7}, - \frac{4}{7}} \right)$ Since ${\bf{N}}$ is unit vector, so $||{a_{\bf{N}}}{\bf{N}}|| = {a_{\bf{N}}} = \sqrt {\left( { - \frac{2}{7}, - \frac{6}{7}, - \frac{4}{7}} \right)\cdot\left( { - \frac{2}{7}, - \frac{6}{7}, - \frac{4}{7}} \right)} $ ${a_{\bf{N}}} = \sqrt {\frac{8}{7}} $ So, ${\bf{N}} = \frac{{{a_{\bf{N}}}{\bf{N}}}}{{{a_{\bf{N}}}}} = \sqrt {\frac{7}{8}} \left( { - \frac{2}{7}, - \frac{6}{7}, - \frac{4}{7}} \right)$ ${\bf{N}} = \left( { - \frac{1}{{\sqrt {14} }}, - \frac{3}{{\sqrt {14} }}, - \frac{2}{{\sqrt {14} }}} \right)$ Finally, we obtain the decomposition of ${\bf{a}}$: ${\bf{a}}\left( t \right) = {a_{\bf{T}}}{\bf{T}} + {a_{\bf{N}}}{\bf{N}}$ at $t=2$: ${\bf{a}}\left( 2 \right) = \left( {2, - 2,0} \right) = \frac{{12}}{{\sqrt {21} }}{\bf{T}}\left( 2 \right) + \sqrt {\frac{8}{7}} {\bf{N}}\left( 2 \right)$, where ${\bf{T}}\left( 2 \right) = \frac{1}{{\sqrt {21} }}\left( {4, - 2,1} \right)$ and ${\bf{N}}\left( 2 \right) = \left( { - \frac{1}{{\sqrt {14} }}, - \frac{3}{{\sqrt {14} }}, - \frac{2}{{\sqrt {14} }}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.