Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 32

Answer

$\kappa \left( {\frac{\pi }{4}} \right) \simeq 0.2258$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\tan t,\sec t,\cos t} \right)$. Using Theorem 2 of Section 3.6 on page 138, we obtain ${\bf{r}}'\left( t \right) = \left( {{{\sec }^2}t,\sec t\tan t, - \sin t} \right)$ ${\bf{r}}{\rm{''}}\left( t \right) = \left( {2{{\sec }^2}t\tan t,\sec t{{\tan }^2}t + {{\sec }^3}t, - \cos t} \right)$ At $t = \frac{\pi }{4}$, we get ${\bf{r}}'\left( {\frac{\pi }{4}} \right) = \left( {2,\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)$ ${\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right) = \left( {4,3\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)$ By Eq. (3) of Theorem 1 (Section 14.4) the curvature is $\kappa \left( t \right) = \frac{{||{\bf{r}}'\left( t \right) \times {\bf{r}}{\rm{''}}\left( t \right)||}}{{||{\bf{r}}'\left( t \right)|{|^3}}}$ So, at $t = \frac{\pi }{4}$, the curvature is $\kappa \left( {\frac{\pi }{4}} \right) = \frac{{||{\bf{r}}'\left( {\frac{\pi }{4}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right)||}}{{||{\bf{r}}'\left( {\frac{\pi }{4}} \right)|{|^3}}}$ Evaluate ${\bf{r}}'\left( {\frac{\pi }{4}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right)$ ${\bf{r}}'\left( {\frac{\pi }{4}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 2&{\sqrt 2 }&{ - \frac{1}{2}\sqrt 2 }\\ 4&{3\sqrt 2 }&{ - \frac{1}{2}\sqrt 2 } \end{array}} \right|$ $ = \left( { - 1 + 3} \right){\bf{i}} - \left( { - \sqrt 2 + 2\sqrt 2 } \right){\bf{j}} + \left( {6\sqrt 2 - 4\sqrt 2 } \right){\bf{k}}$ $ = 2{\bf{i}} - \sqrt 2 {\bf{j}} + 2\sqrt 2 {\bf{k}}$ So, $||{\bf{r}}'\left( {\frac{\pi }{4}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right)|| = \sqrt {\left( {2, - \sqrt 2 ,2\sqrt 2 } \right)\cdot\left( {2, - \sqrt 2 ,2\sqrt 2 } \right)} $ $ = \sqrt {4 + 2 + 8} = \sqrt {14} $ and $||{\bf{r}}'\left( {\frac{\pi }{4}} \right)|| = \sqrt {\left( {2,\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)\cdot\left( {2,\sqrt 2 , - \frac{1}{2}\sqrt 2 } \right)} $ $ = \sqrt {4 + 2 + \frac{1}{2}} = \sqrt {\frac{{13}}{2}} $ $||{\bf{r}}'\left( {\frac{\pi }{4}} \right)|{|^3} = {\left( {\frac{{13}}{2}} \right)^{3/2}}$ Substituting these results in $\kappa \left( {\frac{\pi }{4}} \right)$: $\kappa \left( {\frac{\pi }{4}} \right) = \frac{{||{\bf{r}}'\left( {\frac{\pi }{4}} \right) \times {\bf{r}}{\rm{''}}\left( {\frac{\pi }{4}} \right)||}}{{||{\bf{r}}'\left( {\frac{\pi }{4}} \right)|{|^3}}}$ gives $\kappa \left( {\frac{\pi }{4}} \right) = \sqrt {14} {\left( {\frac{2}{{13}}} \right)^{3/2}} \simeq 0.2258$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.