Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.7 Cylindrical and Spherical Coordinates - Exercises - Page 700: 29


$$ r= z\sec \theta \tan \theta .$$

Work Step by Step

Since $$ x=r\cos \theta,\quad y=r\cos \theta, \quad z=z,$$ then $\dfrac{x^2}{yz}=1$ takes the form $$\frac{ r^2\cos^2\theta}{z r\sin\theta } =1\Longrightarrow r=\frac{z\sin\theta}{\cos^2\theta}=z\sec \theta \tan \theta .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.