Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 8

Answer

Area of the shaded region: $\frac{3}{8}\pi - 1$.

Work Step by Step

The shaded region corresponds to the interval: $0 \le \theta \le \frac{\pi }{2}$. So, the area of the shaded region is $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} {\left( {1 - \cos \theta } \right)^2}{\rm{d}}\theta = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} \left( {1 - 2\cos \theta + {{\cos }^2}\theta } \right){\rm{d}}\theta $ Since ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$, the integral becomes $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} \left( {1 - 2\cos \theta + \frac{1}{2}\left( {1 + \cos 2\theta } \right)} \right){\rm{d}}\theta $ $area = \frac{1}{2}\left( {\theta - 2\sin \theta + \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta } \right)|_0^{\pi /2}$ $area = \frac{1}{2}\left( {\frac{\pi }{2} - 2 + \frac{\pi }{4}} \right) = \frac{3}{8}\pi - 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.