Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 18

Answer

$area = \frac{\pi }{2}$

Work Step by Step

Write $r = 2\sin \left( {\theta + \frac{\pi }{4}} \right) = 2\left( {\sin \theta \cos \frac{\pi }{4} + \cos \theta \sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin \theta + \cos \theta } \right)$ and $r = \sec \left( {\theta - \frac{\pi }{4}} \right) = \frac{1}{{\cos \left( {\theta - \frac{\pi }{4}} \right)}} = \frac{1}{{\cos \theta \cos \frac{\pi }{4} + \sin \theta \sin \frac{\pi }{4}}} = \frac{2}{{\sqrt 2 \left( {\cos \theta + \sin \theta } \right)}}$ We find the points of intersection between the two polar curves by solving the equation $r = 2\sin \left( {\theta + \frac{\pi }{4}} \right) = \sec \left( {\theta - \frac{\pi }{4}} \right)$ So, $\sqrt 2 \left( {\sin \theta + \cos \theta } \right) = \frac{2}{{\sqrt 2 \left( {\cos \theta + \sin \theta } \right)}}$ ${\left( {\sin \theta + \cos \theta } \right)^2} = 1$ ${\sin ^2}\theta + 2\sin \theta \cos \theta + {\cos ^2}\theta = 1$ $2\sin \theta \cos \theta = 0$ The solutions are $\theta = 0,\frac{\pi }{2}$. Using Eq. (2) of Theorem 1, the area of the region inside the circle $r = 2\sin \left( {\theta + \frac{\pi }{4}} \right)$ and above the line $r = \sec \left( {\theta - \frac{\pi }{4}} \right)$ is $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} \left( {{{\left( {2\sin \left( {\theta + \frac{\pi }{4}} \right)} \right)}^2} - {{\left( {\sec \left( {\theta - \frac{\pi }{4}} \right)} \right)}^2}} \right){\rm{d}}\theta $ $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} \left( {4{{\sin }^2}\left( {\theta + \frac{\pi }{4}} \right) - {{\sec }^2}\left( {\theta - \frac{\pi }{4}} \right)} \right){\rm{d}}\theta $ $area = 2\cdot\mathop \smallint \limits_0^{\pi /2} {\sin ^2}\left( {\theta + \frac{\pi }{4}} \right){\rm{d}}\theta - \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} {\sec ^2}\left( {\theta - \frac{\pi }{4}} \right){\rm{d}}\theta $ Write $\alpha = \theta + \frac{\pi }{4}$ and $\beta = \theta - \frac{\pi }{4}$. So, $d\alpha = d\theta $ and $d\beta = d\theta $. The integral becomes $area = 2\cdot\mathop \smallint \limits_{\pi /4}^{3\pi /4} {\sin ^2}\alpha {\rm{d}}\alpha - \frac{1}{2}\cdot\mathop \smallint \limits_{ - \pi /4}^{\pi /4} {\sec ^2}\beta {\rm{d}}\beta $ From the Table of Trigonometric Integrals of Section 8.2 on page 402, we have $\smallint {\sin ^2}x{\rm{d}}x = \frac{x}{2} - \frac{{\sin 2x}}{4} + C$ and $\smallint {\sec ^m}x{\rm{d}}x = \frac{{\tan x{{\sec }^{m - 2}}x}}{{m - 1}} + \frac{{m - 2}}{{m - 1}}\smallint {\sec ^{m - 2}}x{\rm{d}}x$ Thus, $area = 2\left( {\frac{\alpha }{2} - \frac{{\sin 2\alpha }}{4}} \right)|_{\pi /4}^{3\pi /4} - \frac{1}{2}\tan \beta |_{ - \pi /4}^{\pi /4}$ $area = 2\left( {\frac{{3\pi }}{8} - \frac{\pi }{8} + \frac{1}{4} + \frac{1}{4}} \right) - \frac{1}{2}\left( 2 \right) = \frac{\pi }{2} + 1 - 1 = \frac{\pi }{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.