Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.4 Area and Arc Length in Polar - Exercises - Page 624: 7

Answer

Total area is $\frac{3}{2}\pi $.

Work Step by Step

First, we find the limits of integration. When $\theta=0$, we have $r=0$, so the cardioid starts at the origin. When $\theta=\pi$, we have $r=2$. So, the rectangular coordinates at $\theta=\pi$ is $\left( { - 2,0} \right)$. This corresponds to the upper-half of the cardioid. Thus, by symmetry, the interval of $\theta$-values of the cardioid is $0 \le \theta \le 2\pi $. Using Eq. (2) of Theorem 1, the total area of the cardioid is $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{2\pi } {\left( {1 - \cos \theta } \right)^2}{\rm{d}}\theta = \frac{1}{2}\cdot\mathop \smallint \limits_0^{2\pi } \left( {1 - 2\cos \theta + {{\cos }^2}\theta } \right){\rm{d}}\theta $ Since ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$, the integral becomes $area = \frac{1}{2}\cdot\mathop \smallint \limits_0^{2\pi } \left( {1 - 2\cos \theta + \frac{1}{2}\left( {1 + \cos 2\theta } \right)} \right){\rm{d}}\theta $ $area = \frac{1}{2}\left( {\theta - 2\sin \theta + \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta } \right)|_0^{2\pi }$ $area = \frac{1}{2}\left( {2\pi + \pi } \right) = \frac{3}{2}\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.