Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 537: 31

Answer

(a) $M=999$ $\mathop {\lim }\limits_{n \to \infty } {a_n} = 1$ (b) $M=99999$ $\mathop {\lim }\limits_{n \to \infty } {a_n} = 1$

Work Step by Step

(a) The limit definition requires us to find, for $\varepsilon = 0.001 > 0$, a number $M$ such that (1) ${ \ \ \ \ \ }$ $\left| {{a_n} - 1} \right| \le 0.001$ for all $n \ge M$. We have $\left| {{a_n} - 1} \right| = \left| {\frac{n}{{n + 1}} - 1} \right| = \left| {\frac{{n - n - 1}}{{n + 1}}} \right| = \frac{1}{{n + 1}}$ Therefore, $\left| {{a_n} - 1} \right| \le 0.001$ if $\frac{1}{{n + 1}} \le 0.001$, $\frac{1}{{0.001}} \le n + 1$ or $n \ge 999$ Thus, equation (1) is valid with $M=999$. By the limit definition, this proves that $\mathop {\lim }\limits_{n \to \infty } {a_n} = 1$. (b) Using the same method as in part (a): We have $\left| {{a_n} - 1} \right| = \left| {\frac{n}{{n + 1}} - 1} \right| = \left| {\frac{{n - n - 1}}{{n + 1}}} \right| = \frac{1}{{n + 1}}$ Therefore, $\left| {{a_n} - 1} \right| \le 0.00001$ if $\frac{1}{{n + 1}} \le 0.00001$, $\frac{1}{{0.00001}} \le n + 1$, or $n \ge 99999$ Thus, equation (1) is valid with $M=99999$. By the limit definition, this proves that $\mathop {\lim }\limits_{n \to \infty } {a_n} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.