Answer
$\left( { - 1,1} \right]$
Work Step by Step
$$\eqalign{
& \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}{x^n}}}{n}} \cr
& {\text{Let }}{u_n} = \frac{{{{\left( { - 1} \right)}^n}{x^n}}}{n} \cr
& {\text{Using the ratio test}} \cr
& \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{u_{n + 1}}}}{{{u_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{\frac{{{{\left( { - 1} \right)}^{n + 1}}{x^{n + 1}}}}{{n + 1}}}}{{\frac{{{{\left( { - 1} \right)}^n}{x^n}}}{n}}}} \right| \cr
& {\text{Simplifying}} \cr
& = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{\left( { - 1} \right)}^{n + 1}}{x^{n + 1}}}}{{n + 1}} \cdot \frac{n}{{{{\left( { - 1} \right)}^n}{x^n}}}} \right| \cr
& = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{\left( { - 1} \right)}^n}\left( { - 1} \right){x^n} \cdot x}}{{n + 1}} \cdot \frac{n}{{{{\left( { - 1} \right)}^n}{x^n}}}} \right| \cr
& = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{\left( { - 1} \right) \cdot x}}{{n + 1}} \cdot n} \right| \cr
& = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{nx}}{{n + 1}}} \right| \cr
& = \left| x \right|\mathop {\lim }\limits_{n \to \infty } \left| {\frac{n}{{n + 1}}} \right| \cr
& {\text{Evaluating the limit}} \cr
& = \left| x \right|\left( 1 \right) \cr
& = \left| x \right| \cr
& {\text{By the Ratio Test}},{\text{ the series converges for }} \cr
& \left| x \right| < 1 \cr
& - 1 < x < 1 \cr
& \cr
& {\text{At the endpoints}}{\text{, we have}} \cr
& x = - 1 \to \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}{{\left( { - 1} \right)}^n}}}{n}} = \sum\limits_{n = 1}^\infty {\frac{{{{\left[ {\left( { - 1} \right)\left( { - 1} \right)} \right]}^n}}}{n} = } \sum\limits_{n = 1}^\infty {\frac{1}{n},{\text{ diverges}}} \cr
& x = 1 \to \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}{{\left( 1 \right)}^n}}}{n}} = \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{n},{\text{ This is an alternating series}}} , \cr
& {\text{then at }}x = 1{\text{ the series converges}}{\text{.}} \cr
& {\text{The interval of convergence is}} \cr
& \left( { - 1,1} \right] \cr} $$