Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.8 Exercises - Page 654: 12

Answer

$\left( { - \frac{1}{2},\frac{1}{2}} \right)$

Work Step by Step

$$\eqalign{ & \sum\limits_{n = 0}^\infty {{{\left( {2x} \right)}^n}} \cr & {\text{Rewrite}} \cr & \sum\limits_{n = 0}^\infty {{{\left( {2x} \right)}^n}} = \sum\limits_{n = 0}^\infty {\underbrace {\left( 1 \right)}_a\underbrace {{{\left( {2x} \right)}^n}}_{{r^n}}} \cr & {\text{This is a geometric series with }}a = 1{\text{ and }}r = 2x \cr & {\text{The geometric series converges when }}\left| r \right| < 1,{\text{ then}} \cr & \left| {2x} \right| < 1 \cr & {\text{Solving the inequality}} \cr & - 1 < 2x < 1 \cr & - \frac{1}{2} < x < \frac{1}{2} \cr & \cr & {\text{At the endpoints}}{\text{, we have}} \cr & \sum\limits_{n = 0}^\infty {{{\left( {2\left( { - \frac{1}{2}} \right)} \right)}^n}} = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n},{\text{Alternating series }}\left( {{\text{Diverges}}} \right)} \cr & \sum\limits_{n = 0}^\infty {{{\left( {2\left( {\frac{1}{2}} \right)} \right)}^n}} = \sum\limits_{n = 0}^\infty {1,{\text{ }}\left( {{\text{Diverges}}} \right)} \cr & {\text{Diverges on both endpoints}}{\text{, so the interval of convergence is}} \cr & \left( { - \frac{1}{2},\frac{1}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.