Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.7 Exercises - Page 645: 50

Answer

$n=2$

Work Step by Step

$cos x = \Sigma^{\infty}_{n=0} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1- \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + ... $ $c=0$ $|R_{n}(x)| = \frac{(x-c)^{n+1}}{(n+1)!} max |f^{n+1}(z)|$ $|R_{1}(0.1)| = \frac{(0.1-0)^{1+1}}{(1+1)!}(1) \approx 0.005 \gt 0.001$ $|R_{2}(0.1)| = \frac{(0.1-0)^{2+1}}{(2+1)!}(1) \approx 0.000177 \lt 0.001$ 2nd degree polynomial needed $cosx \approx \frac{x^2}{2!}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.