Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.7 Exercises - Page 645: 45

Answer

$|R_4|\leq2.025\times10^{-5}$

Work Step by Step

$cos(0.3)\approx1-\frac{(0.3)^2}{2!}+\frac{(0.3)^4}{4!}$ $f(x)=cosx$ $x=0.3$ $a=0$ (function is centered at 0) $n=4$ To find the error of the function, use Lagrange Error Bound. The formula for Lagrange Error Bound is: $|R_n|\leq\frac{max|f^{n+1}c||x-a|^{n+1}}{(n+1)!}$ $|R_4|\leq\frac{max|f^{4+1}c||0.3-0|^{4+1}}{(4+1)!}$ $|R_4|\leq\frac{max|f^{5}c||0.3|^{5}}{5!}$ To find the $max|f^{5}c|$: $f(x)=cosx$ $f'(x)=-sinx$ $f''(x)=-cosx$ $f'''(x)=sinx$ $f^4(x)=cosx$ $f^5(x)=-sinx$ $max|f^{5}c|=max|-sinc|=max|sinc|$ The maximum of sin(c) will always be $1$ because the upper limit for the range of sinx is always $1$. Therefore, the $max|sinc|=1$: $|R_4|\leq\frac{1||0.3|^{5}}{5!}$ $|R_4|\leq2.025\times10^{-5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.