Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.7 Exercises - Page 645: 46

Answer

$|R_5|\leq0.003775391428$

Work Step by Step

$e\approx1+1+\frac{1^2}{2!}+\frac{1^3}{3!}+\frac{1^4}{4!}+\frac{1^5}{5!}$ $f(x)=e^x$ $x=1$ $a=0$ (the function is centered at a=0) $n=5$ To find the error of the function, use Lagrange Error Bound. The formula for Lagrange Error Bound is: $|R_n|\leq\frac{max|f^{n+1}c||x-a|^{n+1}}{(n+1)!}$ $|R_5|\leq\frac{max|f^{5+1}c||1-0|^{5+1}}{(5+1)!}$ $|R_5|\leq\frac{max|f^{6}c||1|^{6}}{6!}$ To find the $max|f^6c|$: $f(x)=e^x$ $f'(x)=e^x$ $f''(x)=e^x$ $f'''(x)=e^x$ $f^4(x)=e^x$ $f^5(x)=e^x$ $f^6(x)=e^x$ Therefore: $f^6(1)=e^1$. $|R_5|\leq\frac{e|1|^{6}}{6!}$ $|R_5|\leq0.003775391428$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.