Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.4 Exercises - Page 618: 62

Answer

Both the series diverges.

Work Step by Step

a) We will apply the limit comparison test with $a_n=\Sigma_{n=1}^{\infty} \dfrac{\ln n}{n}$ and $b_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n}$ We can see that the series $\Sigma b_n$ shows a divergent p-series with $p=1$. Next, we have $\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} =\lim\limits_{n \to \infty} [\dfrac{\dfrac{\ln n}{n}}{1/n}]$ or, $=\lim\limits_{n \to \infty} \ln (n)$ or, $=\infty$ b) We will apply the limit comparison test with $a_n=\Sigma_{n=1}^{\infty} \dfrac{1}{\ln n}$ and $b_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n}$ We can see that the series $\Sigma b_n$ shows a divergent p-series with $p=1$. Next, we have $\lim\limits_{n \to \infty} \dfrac{a_n}{b_n} =\lim\limits_{n \to \infty} [\dfrac{\dfrac{1}{\ln n}}{1/n}]$ or, $=\lim\limits_{n \to \infty}\dfrac{ \ln (n)}{n}$ or, $=\infty$ Hence, we can see that both the series diverges by the limit comparison test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.