Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.4 Exercises - Page 618: 57

Answer

$a_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n^2}$ and $b_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n^3}$ and the series $\Sigma a_nb_n$ converges by the p-series test.

Work Step by Step

Proof: Let us suppose that $a_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n^2}$ and $b_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n^3}$ Then $\Sigma_{n=1}^{\infty} a_n b_n=\Sigma_{n=1}^{\infty} \dfrac{1}{n^5}$ We can notice that $\dfrac{1}{n}\leq \dfrac{1}{n^2}$ because $\dfrac{1}{n^2} \gt 0$ Also, by the p-series test ($\Sigma_{n=1}^{\infty} \dfrac{1}{n^p}\implies p \gt 1;$ series converges), so the series $\Sigma a_nb_n$ converges because $p=5 \gt 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.