Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.1 Exercises - Page 593: 75

Answer

$a_1=1^{\frac{1}{1}}=1$ $a_2=2^{\frac{1}{2}}=1.141$ $a_3=3^{\frac{1}{3}}=1.442$ $a_4=4^{\frac{1}{4}}=1.414$ $a_5=5^{\frac{1}{5}}=1.38$ $a_6=6^{\frac{1}{6}}=1.348$ The sequence converges to 1

Work Step by Step

Whether or not the sequence converges can be judged by calculating $\lim\limits_{n \to \infty}S_n$. $\lim\limits_{n \to \infty}S_n = \lim\limits_{n \to \infty}n^{1/n} = e^{\lim\limits_{n \to \infty}\frac{\ln n}{n}}$. Let's first calculate this $\lim\limits_{n \to \infty}\frac{\ln n}{n}$ By L'Hospital's Rule, $\lim\limits_{n \to \infty}\frac{\ln n}{n}=\lim\limits_{n \to \infty}\frac{(\ln n)^{'}}{n^{'}}=\lim\limits_{n \to \infty}\frac{1/n}{1}=0$ Therefore, $\lim\limits_{n \to \infty}S_n = e^{\lim\limits_{n \to \infty}\frac{\ln n}{n}}= e^0 = 1$ Thus, the series converges and it converges to one
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.